Optimal ( v , 5 , 2 , 1 ) optical orthogonal codes with v ≤ 104
نویسندگان
چکیده
Optimal (v, 5, 2, 1) optical orthogonal codes (OOC) with v ≤ 104 are classified up to equivalence.
منابع مشابه
On optimal (v, 5, 2, 1) optical orthogonal codes
The size of a (v, 5, 2, 1) optical orthogonal code (OOC) is shown to be at most equal to v 12 when v ≡ 11 (mod 132) or v ≡ 154 (mod 924), and at most equal to v 12 in all the other cases. Thus a (v, 5, 2, 1)-OOC is naturally said to be optimal when its size reaches the above bound. Many direct and recursive constructions for infinite classes of optimal (v, 5, 2, 1)-OOCs are presented giving, in...
متن کاملOptimal (v, 4, 2, 1) optical orthogonal codes with small parameters
Optimal (v, 4, 2, 1) optical orthogonal codes (OOC) with v <= 75 and v 6= 71 are classified up to equivalence. One (v, 4, 2, 1) OOC is presented for all v ≤ 181, for which an optimal OOC exists.
متن کاملCombinatorial Constructions for Optical Orthogonal Codes
A (v, k, λ) optical orthogonal code C is a family of (0, 1) sequences of length v and weight k satisfying the following correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C and any integer i ̸≡ 0 (mod v); (2) ∑ 0≤t≤v−1xtyt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C, y = (y0, y1, . . . , yv−1) ∈ C with x ̸= y, and any integer i, where the subscripts are taken mo...
متن کاملCombinatorial constructions of optimal optical orthogonal codes with weight 4
A (v, k, λ) optical orthogonal code C is a family of (0, 1) sequences of length v and weight k satisfying the following two correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C and any integer i 6≡ 0 (mod v); (2) ∑ 0≤t≤v−1xtyt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C, y = (y0,y1, . . ., yv−1) ∈ C with x 6= y, and any integer i, where the subscripts are take...
متن کاملOptical orthogonal codes: Their bounds and new optimal constructions
A (v, k, λa, λc) optical orthogonal code C is a family of (0, 1)-sequences of length v and weight k satisfying the following two correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λa for any x = (x0, x1, . . . , xv−1) and any integer i 6≡ 0 mod v; and (2) ∑ 0≤t≤v−1xtyt+i ≤ λb for any x = (x0, x1, . . . , xv−1), y = (y0, y1, . . . , yv−1) with x 6= y, and any integer i, where subscripts are taken mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011